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In the Ziff, Gulari, and Barshad (ZGB) model of the catalytic reaction 2A + B, = 2AB, we have
investigated by Monte Carlo (MC) simulation oscillatory kinetics and spatial-temporal self-organi-
zation caused by jumpwise variations in the catalytic properties of the surface. The following
conditions were used. The adsorbed B, particles did not dissociate and did not react until
A-coverage was less than the critical coverage ©%. When, however. A-coverage reached ©Y. the
adsorbed B, particles dissociated instantly into B particles and reacted with the adjacent A parti-
cles. It has been found that in a certain region of Y, (a ratio of partial pressures of A and B, in the
gas phase) oscillatory kinetics is controlled mainly by one compact cluster of A particles. We have
established the specific mechanism of A-clusterization. We found also that in a certain region of Y,
our stochastic system demonstrates a route to chaos which is very similar to “intermittency’”

(P. Manneville and Y. Pomeau scenario).

INTRODUCTION

The complex dynamics of heterogeneous
catalytic reactions far from equilibrium is of
great interest for practical applications as
well as for fundamental science. These re-
actions may exhibit many phenomena of
nonlinear dynamics: various types of oscil-
lations, which vary from periodic, to quasi-
periodic, to chaotic, and various types of
dissipative structures (/-3). It is well estab-
lished that these phenomena arise as a di-
rect result of nonlinearities within the reac-
tion. Several mechanisms which are
responsible for this complex dynamics have
been proposed: the dependence of the heat
of adsorption on coverage (4-7), the slow
reversible oxidation of catalytic surface (&,
9), adsorbate-induced surface reconstruc-
tion (/0-14), and cluster formation (15-17).

An important role in understanding com-
plex dynamics belongs to simple models
which allow one to investigate the mecha-
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nisms in great detail and, hence, can pro-
vide a basis for more elaborate models.

One of the most studied models of the
Langmuir-Hinshelwood catalytic reaction
2A + B> = 2AB is the ZGB model intro-
duced by Ziff ¢t al. (/8). This is a nonequili-
brium model which exhibits phase-transi-
tion-like behavior. The only parameter in
this model, Y, (a ratio of partial pressures
of A and B> reagents in the gas phase), sets
the probabilities for which two reactive spe-
cies (A or B;) collide with the surface. It
has been shown that steady states with non-
Zero reaction rate exist in a certain region
of this parameter and that outside of this
region the surface becomes completely
covered with A or B particles. This model
has been studied in great detail in several
works (/8-24).

In the present work we investigate the
dynamics of the ZGB model under condi-
tions of jumpwise changes of the catalytic
properties of the surface which can arise
from surface reconstruction induced by re-
agent adsorption. Until the fractional cov-
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erage of A particles, ®4, reaches the criti-
cal value ®OY, the B, particles adsorb
nondissociatively and do not react with A
particles. But when ®4 becomes equal to
OY. then the B, particles adsorb disso-
ciatively and react immediately with adja-
cent A particles. In some ways the system
simulated bears resemblance to the CO oxi-
dation on Pt(100), where jumpwise varia-
tions of the catalytic properties of the sur-
face induced by CO adsorption have been
found.

We found that in a certain region of Y,
the specific clusterization of A reagent oc-
curs. In this case the sustained self oscilla-
tions of the rcaction rate are controlled
mainly by one compact cluster of A parti-
cles. The growth of the cluster Ieads to the
increase in oscillation rate that leads, in
turn, to the decreasc in the cluster size and
vice versa. i.e.. the cluster plays the role of
a feedback. We found also that in a certain
range of Y, our stochastic system demon-
strates a transition to chaos which 1s very
similar to “intermittency’’ (P. Manneville
and Y. Pomeau scenario (25)).

MODEL DESCRIPTION

We have simulated the bimolecular re-
action on the catalyst surface between A
and B, reagents through the classical
Langmuir-Hinshelwood mechanism con-
sisting of the following steps.

1. Reagent Adsorption. In the adsorp-
tion process, A species occupy single sites,
while B, particles occupy a pair of adjacent
(nearest neighbor) sites. If surface A-cover-
age is below O, the adsorbed B, particles
do not dissociate. B> adsorption becomes
dissociative only when @, = ©Y. On the
other hand. the character of the A particle
adsorption does not change.

2. Reagent Desorption. Desorption of
the adsorbed A, B, and B, particles does
not occur and A and B particles can leave
the surface in the form of AB product only.

3. Reaction. The reaction can occur only
between A and B particles: nondissociated
B, particles do not react. The reaction be-
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tween A and B particles occurs with unity
probability every time when a pair of A and
B happen to be in the nearest neighbor posi-
tion. AB particles immediately leave the
surface, vacating two sites,

4. Surfuce Reconstruction. When A-
coverage reaches ®X, surface reconstruc-
tion is supposed to occur. As a result of
reconstruction, all B> particles on the sur-
face dissociate into B particles which react
with the adjacent A particles.

If as a result of the reconstruction cycle
the A-coverage becomes less than O, the
B particles remaining on the surface do not
reassociate, but continue to react with A
particles which appear on adjacent sites
due to subsequent adsorption. On the other
hand, the adsorption of B. particles be-
comes nondissociative. They do not react
with A molecules until ®, < O,

If after the reconstruction cycle A-cover-
age still remains equal to or grcater than
OV, the adsorption of B- particles becomes
dissociative. They adsorb on the surface in
the form of B particles and react with adja-
cent A particles. Thus, at O, < O there
can be sites occupied by A, B, and B, parti-
cles as well as vacant sites, while at @, =
OY there could be sites occupied by A and
B particles and vacant sites.

As one can see, in our model, surface
reconstruction is a hypothetic phenome-
non. We only postulate its influence upon
reagent adsorption.

To simulate the surface we used a 300 x
300 square lattice with periodic boundary
conditions and conventional simulation al-
gorithm described in detail elsewhere (/8).
We investigated the model at one value of
O = 0.3. The simulations were usually run
to 1000 Monte Carlo steps (MCS) and in
some cases up to 40,000 MCS to insure that
the cluster of A particles is stable and does
not continue to grow. We measured the re-
action rate as the number of reacted AB
pairs per MCS per one lattice site. In com-
paring the oscillation rates obtained at vari-
ous values of Y, it is not convenient to
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measure the oscillation frequencies in
Monte Carlo steps because MCS has differ-
ent time cost depending on the value of Ya.
For our aims it is more convenient to ex-
press the oscillation frequencies directly in
seconds using the ratio between MCS and
real time. Note that one MCS corresponds,
in our model, to 90,000 (300 x 300) random
adsorption trials (on the average one trial
per site) and equals the real time interval
7= 1/1 + Y,).

RESULTS AND DISCUSSION

The simulations show that self-sustained
periodic oscillations of the reaction rate oc-
curinthe region Y, = Ya = Y>, where Y, =
0.59 = 0.01 and Y> = 1.05 = 0.01. Outside
this region self-sustained oscillations do not
exist and the system goes into steady states
with zero reaction rate. At Y, > Y- all sur-
face is completely covered with A particles,
while at Y, < Y, it is covered with A, B,
and B, particles. In the latter case, despite
the presence of A and B particles on the
surface, reaction between them is impos-
sible because they are separated by sites
occupied by B- particles. We did not aim to
determine the boundaries of the oscillation
region with maximum accuracy. Within our
accuracy (*=0.01) the size of the oscillation
region, in our model, is approximately the
same as that of the region of steady states
with nonzero reaction rate in the ZBG
model. The time dependencies of the reac-
tion rate for several values of Y4 are shown
in Fig. 1. The oscillations are periodic peak
oscillations with small random irregular
perturbations in frequencies and ampli-
tudes that are caused by the stochastic na-
ture of the system. As one can see from
Fig. 1, the oscillation frequency increases
as Y, increases. The reason for that is evi-
dent because the oscillation frequency is
determined by the time of accumulation of
A particles on the surface. The average os-
cillation frequency as a function of n (ny =
Ya/(Ys + 1) is the mole fraction of A parti-
cles in the gas phase) for the entire oscilla-
tion region is shown in Fig. 2. The curve in
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F1G. 1. Reaction rate as a function of time for vari-
ous Yy (a) ¥y = 0.6, (b) Yy = 0.7, (c) Yy = 0.85, (d)
Ya=10,and (e) Yy = I.1.

Fig. 2 has two parts, each part being practi-
cally linear and having its own slope. It in-
dicates that in the region of large values of
n, there appears an additional factor which
effectively influences the oscillation rate.
This additional factor is associated with the
appearance of a cluster of A particles. We
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have studied this effect thoroughly. The de- 0.8
gree of A-clusterization at Y, = 0.6 and
Y» = 1.0 is shown in Figs. 3a and 3b, re-
spectively. The histograms show the frac-
tion of A particles having 0, 1, 2, 3, and 4
nearest neighbors, respectively. As one can
see, there is no clusterization at Y, = 0.6,
while it is very considerable at Y4 = 1.0. In
the latter case, the summary fraction of A
particles with 4 and 3 nearest neighbors is
about 0.8 and, hence. these A particles are
members of a compact cluster. ° 50 100 150 200
The time dependence of the clusteriza- time, s
tion of A particles at Y4 = 1.0 is shown in

fraction

FiG. 4. Fraction of A particles having 3 (curve 3) and
4 (curve 4) nearest neighbors as a function of time at

T
4

I I 1 1 L Ya=140.
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a
067 ~  Fig. 4. The curves in Fig. 4 labeled 3 and 4
5.5 u correspond to the fraction of A particles
- with 3 and 4 nearest neighbors, respec-
8 044 I~ tively. Onc can see that at the beginning the
S .3 | fraction of A particles with 4 ncarest neigh-
- bors grows gradually while the fraction
0<2J B with 3 neighbors decreases gradually. It in-
o1 I I dicates that the density of the A-cluster in-
' I r creases with time. Eventually both curves
0.0 - become time independent. We continued
0 ) ) r . simulation runs up to 40,000 MCS and did
number of nearest neighbours not see any evolution of these curves.
Now we explain the mechanism of clus-
. ) | ) 0 ter formation in detail. First, we consider
o7 I the case Yo = 0.6, low pressure of A re-
06 b | agent, when there is no clusterization, and
analyze the situation on the surface just af-
0.5 - ter completing an oscillation. In the course
€ g4 r_ of thc previous 'recor}struc.tion cycle gll B
Z particles have dissociated into B particles,
R - and some of them have reacted with A par-
oo i ticles and left the surface. The A-coverage
' dropped below the critical value (0.3) and
0.1 = the surface returned to its nonreconstruc-
B | l l tive state. Under these conditions initially a
0.0 . T . — rapid growth of B,-coverage occurs, since,
1

2 3 4 first, many vacant sites are available and,
number of nearest neighbours second, at @, < OY the adsorbing B- parti-

F16. 3. Degree of clusterization of A particles. i.e.. cles do not Q1ssoc1ate and do not react. At
the fraction of A particles having 0. 1. 2. 3, and 4 the same time A-coverage grows very

nearest neighbors: (4l ¥4 = 0.6, and (b) ¥, = 1.0. slowly because a considerable part of the
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adsorbing A particles react with B particles
remaining on the surface. The sites vacated
due to the reaction are mainly occupied by
B, particles. At the moment when A parti-
cles at last have got a possibility to accumu-
late effectively, only a few vacant sites re-
main on the surface. These vacant sites are
mainly the isolated “*holes’” remaining after
two-site B, particle adsorption. Thus, prac-
tically all the adsorbed A particles have B-
nearest neighbors and, hence, must “*die””
in the next oscillation, so the accumulation
of A particles after every oscillation starts
practically from zero. It is evident that no
A-clusterization occurs under these condi-
tions.

A different situation takes place at Y, =
1.0 (high pressure of A reagent). Here the
adsorption rate of A particles is consider-
ably higher. Now, just after completing an
oscillation, A particles have a possibility to
accumulate rather effectively on a nonre-
constructed surface. They can occupy the
sites not only among B particles but also in
the neighborhood of each other forming
small random islands. The formation of
such A islands favors keeping A particles
(inside the islands) and leads to an increase
in oscillation frequency. The increase in 0s-
cillation frequency leads to a disappearance
of small islands while the large islands con-
tinue to grow. It is evident that the largest
island has the greatest advantage. Finally,
after several hundred oscillations, such a
process leads to the formation of one stable
cluster of A particles. Eventually, a steady
state is reached when the average number
of A particles adsorbed between two subse-
quent oscillations at the cluster boundaries
is approximately equal to the average num-
ber of A particles leaving these boundaries
during oscillation. Of course, the above
picture is not such a perfect one. The sto-
chastic nature of this process is evident.
Sometimes we observed two clusters ap-
proximately equal in size.

Let us emphasize the specificity of de-
scribed mechanism of A-clusterization.
“Clustering effect’ in the absence of at-
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tractive lateral interactions and surface dif-
fusion has been studied in several works in
two MC models of catalytic reactions, A +
B = AB (20, 27, 28) and 2A + B, = 2AB
(21, 22). 1t has been shown that such clus-
terization is caused by irreversible reagent
adsorption and the fact that reaction re-
moves AB pairs. However, the A-cluster-
ization in our model is caused not only by
these reasons. As one can see from above,
it is also caused by the jumpwise variations
of the catalytic properties of the surfuce in-
duced by adsorption. 1t is well known that
in the ZGB model, just in this region of Y,
A-clusterization does not occur (/8, 2/) be-
cause A-coverage is about zero. Thus the
specific A-clusterization appears to be due
to the fact that A particles have a possibility
to accumulate effectively in the intervals
between reaction cycles. At the same time,
the growth of the A-cluster is restricted by
the reaction cycles during which A-cover-
age tends to zero. We performed ten simu-
lation runs, each one up to 40.000 MCS, at
Ya = 1.0, where the A-clusterization is
high, and did not see that the A-cluster con-
tinued to grow.

The influence of cluster formation on os-
cillatory kinetics can be manifested in many
ways. In Ref. (/5) it was supposed that re-
versible CO blocking of the Pt surface was
the reason for the unstable behavior of the
CO oxidation reaction. In Ref. (/7) oscilla-
tory behavior of the reduction of NO by
NH; over the Pt(100) single-crystal surface
has been studied. The authors showed that
the oscillatory kinetics can be described by
a model in which NO forms densely packed
islands within which only few sites are
available for NO dissociation. NO and NH;
react with each other at the boundaries be-
tween NO islands and areas with vacant
sites where NO and NH; dissociation can
occur. Thus, in this modetl, NO islands de-
termine vacant sites required for dissocia-
tion. In Ref. (/6) various island models of
catalytic oxidation of carbon monoxide and
carbon monoxide—olefin mixtures have
been studied. It was shown that in a certain
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case the size of the CO and O islands rises
and falls during oscillations and that the
aperiodic behavior may result from the fact
that the maximum size that the islands
reach in each cycle does not remain con-
stant. In Ref. (27) the dynamic behavior of
an MC model of the catalytic reaction A +
B = AB has been studied for smaill lattices.
The authors state that, in the case of a cer-
tain reversibility in reagent adsorption, cha-
otic oscillations in the reaction rate are
caused by reagent clusterization.

However, the mechanism of clusteriza-
tion described in the present paper and the
influence of the arisen A-cluster on the os-
cillatory kinetics, to our knowledge, do not
have analogies. This A-cluster is an exam-
ple of the dissipative structure which arises
and develops under nonequilibrium condi-
tions of trigger oscillations.

Consider the behavior of the system out-
side the oscillation region. At large values
of Y,, the increase in oscillation frequency
can no longer prevent cluster growth and
the cluster covers the entire surface. This
situation is shown in Fig. 5b. At Y, = 1.2,
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Fi1G. S. Behavior of the system outside the region of
the existence of oscillations: (a) Y, = 0.57 and (b)
Yy = 1.2
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F1G. 6. Three consecutive states of the system in the
course of the transition to chaos: (a}) Y4 = 1.0, (b) Y, =
104, and (¢) ¥, = L.1.

the surface is covered completely by A par-
ticles. The situation at small values of Y, is
shown in Fig. 5a. In this case (Y, = 0.57),
after two or three oscillations, the surface is
covered completely by a mixture of A, B,
and B particles. Despite the presence of A
and B particles on the surface, reaction be-
tween them is impossible because they are
separated by sites with B, particles.

When Y, approaches the right boundary
of the oscillation region, the system demon-
strates a transition to chaos via a scenario
that is very similar to “‘intermittency’ (25).
Figure 6 shows three consecutive states in
evolution of the system. As can be seen,
the periodic series of oscillations is inter-
rupted by random delays. Such “‘intermit-
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tency-like’” behavior is somewhat unex-
pected in our stochastic model because it 1s
well known that intermittency arises from
deterministic chaos. Chaotic oscillations of
reaction rate in MC models of catalytic re-
actions A + B = AB (27) and 2A + B, =
2AB (26) have already been observed, but
in both cases the route to chaos was like
“‘order through fluctuation’ (29). We
probed different sequences of random num-
bers and found that the above picture could
shift slightly but it was always reproduced
qualitatively. The shifts arise due to the fi-

I I I I I I

FiG. 7. Phase portraits: (a) Y4 = 0.6 and (b)

Ya = 1.04.
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nite size of the system and they do not have
to be observed in a system of sufficiently
large size. We believe that the scenario ob-
served is the intrinsic feature of our sto-
chastic model.

We applied the time-delay method (30) so
as to demonstrate more clearly the dy-
namics of the system. The time-delay
method allows one to construct ‘“‘phase
portraits’ of the system from time series.
To this effect we plotted a value of the reac-
tion rate at time ¢, r(t), versus r(t + 7),
where 7 is an arbitrary but fixed delay time.
Two portraits, at Y4, = 0.6 and Y, = 1.04,
are shown in Fig. 7. At Y. = 0.6 (Fig. 7a),
the temporal behavior of the system is es-
sentially regular. The fact that movement of
the system follows several trajectories re-
flects the effect of fluctuations. At Y, =
1.04, however, the picture of movement is
quite different. Once an A-cluster formed
(after several hundred oscillations), all tra-
jectories gathered in some region of *‘phase
space,”’ covering the region practically um-
formly (Fig. 7b). Temporal behavior of the
system, in this case, becomes unpredict-
able.

CONCLUSION

We have investigated the ZGB model un-
der conditions of jumpwise variations of the
catalytic properties of the surface and have
established the specific mechanism of A-
clusterization. We found that in a certain
region of Y, the oscillatory kinetics is con-
trolled mainly by one compact cluster of A
particles which plays the role of a feedback.
We found also that our model demonstrates
an “‘intermittency-like’” transition to chaos.
We believe that these findings have some
theoretical interest.
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